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ABSTRACT

This thesis explores using a software defined radio (SDR) to create a SDR-based ra-

diometer that is capable of performing the same operation as a traditional radiometer

and offers additional capabilities not found in traditional radiometers. Traditional ra-

diometer requires careful design to ensure correct operation, by digitizing the RF signal

as soon as possible and processing this signal in software, the hardware design of the

radiometer can be simplified.

Digital radiometers have been explored before, but often use customized components.

Software defined radio technology has become more widespread, and affordable Commer-

cial Off The Shelf (COTS) SDRs are now available with high performance. This thesis

leverages a COTS SDR technology to implement and evaluate a SDR-based radiometer.

This will lower the cost of the radiometer and help make radiometers more accessible to

a wider audience. The mapping of the functionality of a traditional radiometer to our

proposed SDR-based radiometer is examined. Then an experimental evaluation of the

performance between a traditional and SDR-based radiometer is conducted. Addition-

ally this thesis explores how the implemented SDR-based radiometer can help mitigate

radio frequency interference.
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CHAPTER 1. INTRODUCTION

This thesis explores using software defined radio (SDR) technology to develop a ra-

diometer that has performance on par with that of traditional radiometer. In addition

to demonstrating a SDR-based radiometer can achieve similar performance, in terms of

sensitivity and stability, as a traditional radiometer, it is shown that the inherent flex-

ibility of SDR technology allows implementing functionality beyond what a traditional

radiometer typically provides. Furthermore, by reducing cost and increasing flexibil-

ity, SDR technology may become an attractive path for broadening the accessibility of

radiometry to the general research community.

Motivation. Remote sensing refers to recording, observing, and perceiving objects

or events that are far away (i.e. remote)[Weng (2012)]. Since the object of interest is

remote, we cannot physically interact with it using local measurement methods such as

placing sensors or probes on the object. Remote sensing can be accomplished in a variety

of ways and the following lists the basic approaches:

1. Visible light: Photography and Photogrammetry,

2. Thermal, Far infrared: Thermal Infrared Radiometry

3. Laser distance measurement: Lidar,

4. Radio Frequency (RF): Radiometry.

Each of these methods has an associated set of pros and cons, thus remote sensing

often uses a combination of methods to paint a complete picture of an object. This thesis

focuses on the apparatus used in radiometry to capture RF signals, called a radiometer.
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Radiometry can be broken into two methods; active or passive. An active system

is one in which a radio frequency signal (or pulse) is generated and transmitted to the

object of interest. The reflection of this RF signal, or in some cases lack of reflection,

gives us information about the object. A passive system is one in which no RF signal

(or pulse) is generated. Instead, this type of radiometer simply listens to the RF energy

that is naturally generated by the object, or that may be reflected from another source,

such as the Sun. Radiometers have been focused on Earth for such purposes as helping

scientists better understand its water cycle by monitoring ocean salinity [Hardy et al.

(1974)] and soil moisture [Liu et al. (2013)]. Radiometers such as these are already

in service on satellites such as the Soil Moisture and Ocean Salinity (SMOS) satellite

[McMullan et al. (2008)] launched by the European Space Agency (ESA). Additional

applications of radiometry include: assessing vegetation health and observing celestial

objects[Ulaby and Long (2014)].

Problem Statement. While radiometers have proved to be an excellent tool for remote

sensing and have been used in research applications for over fifty years, they have not

made it into wide spread use. This is due to the fact that many traditional radiometers

have the following hurdles:

1. They are expensive,

2. They require advanced knowledge to implement and use,

3. They are typically built and designed for a custom application.

This thesis aims to help address each of these hurdles as follows. The use of com-

mercial off the shelf (COTS) parts and solutions will help reduce cost and the need for

a custom design. Software will be used to define key components of the radiometer that

have traditionally been implemented in hardware, and to ease adaptation to multiple ap-

plications. A user friendly graphical user interface (GUI) will help reduce the advanced

knowledge required to implement and use the radiometer.
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Contributions. The primary contributions of this thesis are:

1. Development of a software defined radio-based radiometer

2. Python based scripts for analyzing data generated by the radiometer

3. A Radio Frequency Interference (RFI) mitigation technique implemented using

software defined radio technology

Organization. The remainder of this thesis is organized as follows. Chapter 2 gives

a discussion of related works. Chapter 3 gives background on traditional radiometers

and on software defined radios. Chapter 4 presents details on how software defined radio

technology was used to implement a radiometer. Chapter 5 describes the experimentation

setup used to verify and evaluate the operation of the implemented radiometer. Chapter

6 examines the results obtained from our performance evaluation experiments. Chapter

7 concludes this thesis and outlines avenues of future work.



www.manaraa.com

4

CHAPTER 2. RELATED WORKS

Three areas closely related to the work in this thesis are: digital radiometers, soft-

ware defined radio based radiometers, and radio frequency interference (RFI) mitigation.

This chapter first presents two classifications of digital radiometers (hybrid and direct

sampling). Next, software defined radio based radiometers are discussed in their own sec-

tion, as a third classification of digital radiometer. This chapter concludes with a brief

overview of the topic of RFI, which is important to consider when deploying radiometers.

2.1 Digital Radiometers

A digital radiometer replaces portions of a traditional radiometer’s analog compo-

nents with digital components[Ruf and Gross (2010)]. Two types of digital radiometers

include: hybrid and direct sampling.

Hybrid. A hybrid radiometer uses a mixture of analog and digital components[Skou

and Vine (2006)]. Often the analog voltage output from the diode of a square law

detector, which is used to indicate the total power observed, will be digitized.

Direct Sampling. A direct sampling radiometer can be considered a type of hybrid

radiometer that directly samples the incoming RF signal and then uses digital signal

processing techniques to extract total power information. As an example, Iowa State

University (ISU) owns a 1.4 GHz, dual polarization, correlating radiometer that uses

direct sampling. It was built by the University of Michigan and put into service at ISU

in 2006 [Erbas et al. (2006)]. This radiometer takes the RF signal and using analog
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components amplifies and filters the signal, and then sends it to an analog to digital

converter. The radiometer is designed to operate in the protected spectrum of 1400 MHz

to 1420 MHz. Unlike other radiometers discussed, this radiometer samples the incoming

RF signal at 1400 MHz. This method allows for power information to be extracted,

however the full signal can not be recreated due to Nyquist’s theorem [Fischman (2001)].

Both hybrid and direct sampling radiometers are designed to retain only the total

power information contained in a RF signal. While measuring total RF power is the pri-

mary purpose of a radiometer, as it will be discussed later, retaining phase and frequency

information can be useful as well.

2.2 Software Defined Radio Based Radiometers

Software defined radio based radiometers can be considered a relatively new subclass

of digital radiometer. With the advent of software defined radios that are now available,

there has been increasing interest in applying this technology to radiometers. This

section discusses two works that have explored using software defined radio technology

in radiometry from the Shirley’s Bay Radio Astronomy Consortium and from Grand

Valley State University.

Shirleys Bay Radio Astronomy Consortium. The Shirleys Bay Radio Astronomy

Consortium (SBRAC) made use of a software defined radio to restore a radio telescope

used for radio astronomy. They attached a software defined radio to their eighteen

meter radius dish to obtain astronomical information by observing the hydrogen line

located at 1420.4058 MHz in the RF spectrum[Leech and Ocame (2007)]. Marcus Leech,

who headed SBRAC, contributed software to GNURadio specifically to support radio

astronomy applications. This branch of GNURadio was used as the software base used

in this thesis [Leech (2006)].
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While parts of the GNURadio software used in this thesis were derived from Marcus

Leech’s work, additional features were added such as offending signal detection, offending

signal mitigation, and a software implemented noise generator. Additionally, elements of

the graphical user interface (GUI) were enhanced to aid in data visualization and analysis

data. For example, a waterfall display of a signal spectrum over time was implemented.

Grand Valley State University. In 2013, the University of Illinois and Grand Valley

State University built a software defined radio based radiometer to listen to emissions

from Jupiter[Behnke et al. (2013)]. They custom built the hardware portion of their

software defined radio using an Analog Devices analog to digital converter (AD9460)

and a Xilinx (Spartan-3E-500) FPGA. They also implemented a RF front end to filter

and amplify the incoming RF signal. The software side of their radiometer was composed

of: 1) GNURadio for low-level communications with their software defined radio and,

2) Python script and WxGUI to implement a higher level user interface. The students

reported that their SDR based radiometer worked well at a low price point. One aspect

that differentiates the work in the thesis from Grand Valley State University’s work is

that they build their own custom hardware for their software defined radio, while in this

work off the shelf components were used with an aim of making radiometers more wildly

accessible to the research community.

2.3 Radio Frequency Interference (RFI) Mitigation

When an RF signal generated by a source other than the object (or phenomena)

of interest interferes (i.e. masks or contaminates) with the RF signal of interest this

is referred to as radio frequency interference (RFI). Radio frequency interference is a

common problem with nearly all radiometers because they are highly sensitive receivers,

thus even small unwanted signals can have a large negative impact on a radiometer based
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experiment. It is for this reason certain frequency bands have been designated by the

international community as “protected frequencies” for radiometer use. However, not

all entities abide by these standards. For example, the satellite radiometer used by the

Soil Moisture Ocean Salinity (SMOS) mission has had numerous issues with RFI [Kerr

(2012)] skewing their data and in some cases making the data unusable for soil moisture

measurements [Richaume (2012)].

The area of RFI detection and mitigation is still an active field of research [Forte et al.

(2013)]. With respect to RFI detection, since radiometers typically do not retain spectral

frequency information, statistical methods have been explored that look at variations in

the received power to determine when RFI is occurring. One such method is the kurtosis

statistic method[De Roo et al. (2007)] while another method is the polarization signature

method. With respect to RFI mitigation, mechanical filters are used to selectively filter

out the offending signals [Misra et al. (2012)].

While mechanical filters are an effective means of RFI mitigation, they add both

weight and complexity to the radiometer. For example, multiple filters would be required

to isolate and remove frequency bands that contain the offending signal(s). One idea this

thesis explores is making use of frequency information and software-based digital filters

for RFI detection and mitigation.
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CHAPTER 3. BACKGROUND

This chapter gives background information on the operation of traditional radiome-

ters and on software defined radios. We begin by looking at the major components of

a radiometer and how it measures power. Next the metrics used to measure the per-

formance of a traditional radiometer are discussed. Then an overview of how software

defined radios operate is given. Finally, we review the tools used to develop a software

defined radio based radiometer.

3.1 Radiometer Basics

A radiometer is a device designed to measure the power in electromagnetic emission

by a material media due to the electron agitation within the material [Ulaby et al. (1981)

in respect to remote sensing. This electromagnetic emission is the thermal noise of the

object and can be correlated to the physical temperature of the object[Nyquist (1928)].

Because of this correlation, the amount of noise received is called the noise temperature

and it is measured in Kelvin.

There are six stages common to all radiometers. They are:

1. Source (antenna or TA)

2. Bandwidth (β),

3. Amplification (power gain or G),

4. Power detection (X2),
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5. Data smoothing,

6. Output (Voltage, rQ, Kelvin).

Figure 3.1 illustrates how a signal propagates through a radiometer. First, the signal

from the source enters the antenna, TA. Next the signal is filtered to a set bandwidth,

β. This filtered signal is then amplified by Low Noise Amplifiers (LNAs) by a power

gain of G. The power information is then extracted from the signal using a square-law

detector, X2. This device is a diode that operates in the square law region. While the

diode is operating in this region, the output voltage is proportional to the square of

the input voltage and is therefore proportional to the input power [Leinweber (2001)].

The voltage output from the square-law detector is then smoothed using an integrator

with an integration time τ . Finally, the integrated voltage signal is then measured and

recorded.

Antenna 
TA

Gain
G

Filter/Bandwidth
ᶔ

∫ V
System Noise

TN

Square-Law Detector
X2

Integration

ᶦ
Vout

Figure 3.1 A total power radiometer block diagram

A non-physical object that is present in all radiometers is system noise, represented

as TN . System noise is noise that is generated from within the radiometer due to thermal

agitation. A radiometer is designed to reduce system noise as much as possible by using

low-loss components and amplifiers that are low noise, such as Low Noise Amplifiers

(LNAs).
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3.1.1 Power measurement

The voltage from a radiometer can be expressed as the sum of the noise voltages

which the amplitude distribution of which is nearly Gaussian as defined by the central

limit theorem. This results in a voltage mean of zero, but results in the root mean square

(rms) value of the voltage to be greater than zero in a band limited sample. Because our

voltage is an RMS value, our power and subsequently our noise power is a RMS value.

As shown in Equation 3.1, the power measured by an ideal radiometer is equal to the

product of the thermal noise from the source (TA), the power gain (G), the bandwidth

(β) of the radiometer, and the Boltzmann constant (k = 1.38× 10−23J/K).

P = k ∗ β ∗G ∗ (TA) watts (3.1)

While the components of an ideal radiometer do not contribute noise power (TN) to

the system, they do in a real radiometer. The impact of this internally generated and

unwanted noise on the power measured by the radiometer is captured by Equation 3.2

where TN is the system noise referred to the input of the system.

P = k ∗ β ∗G ∗ (TA + TN) watts (3.2)

Power gain (G) and bandwidth (β) are important design parameters of a radiometer.

While a large power gain is desired to amplify the source signal (TA), the system noise

is also amplified. The design of these amplifiers are then crucial to amplify the signal

while minimizing contributions of the system noise.

The bandwidth of the source signal is typically wide (large) to maximize the sensitiv-

ity of the radiometer. The two primary limiting factors to bandwidth are: 1) hardware

limitations (e.g. LNA operating limits), and 2) unwanted signals located at a number of

frequencies (e.g. radio communication signals).
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Low Noise Amplification. The method used by most radiometers to mitigate the

system noise contributed during signal amplification is daisy chaining (i.e. cascading)

devices called Low Noise Amplifiers (LNAs). The total amount of amplification we can

expect from n LNAs that are cascaded is the sum of the power gain of each LNA shown

in equation 3.3 where Gn is the power gain value for the nth amplifier.

Gtotal = G1 +G2 +G3 + · · ·+Gn−1 dB (3.3)

A performance metric of an LNA is the noise figure (NF ). The noise figure gives

us the difference between the actual noise output and an ideal amplifier with the same

power gain and bandwidth attached to a matched load at the standard noise temperature

(290 K). Another metric used is the noise factor (F ). The noise factor is the ratio of the

output signal to noise ratio to the input signal to noise figure. The noise factor (F) is

related to the noise figure (NF) as shown in Equation 3.4.

NF = 10 ∗ log10(F ) dB (3.4)

For devices that are cascaded, the total noise factor is found by the Friis formula and

results in equation 3.5 where Fn is the noise factor for the nth device.

F = F1 +
F2 − 1

G1

+
F3 − 1

G1G2

+
F4 − 1

G1G2G3

+ · · ·+ Fn − 1

G1G2G3 · · ·Gn−1

(3.5)

The key implication is that the first LNA in the cascade contributes the most system

noise. As a consequence, it is critical that the first LNA has the smallest noise factor,

while the remaining LNAs provide a majority of the signal power gain.
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3.1.2 Radiometer performance metrics

Two criteria used to determine how well a radiometer performs are: 1) Sensitivity and

2) Stability. These criteria determine the smallest change in signal noise temperature

(i.e. power) the radiometer can detect, and the amount of drift power measurements

have over an extended period of time, respectively..

Sensitivity. Sensitivity of a radiometer is the smallest change in power that can be

detected. A radiometer must be able to differentiate between signal noise received by

the antenna (TA) and the system generated noise (TN).

Two methods to quantify the sensitivity of a radiometer are: 1) experimentally, and

2) analytically. Experimentally, sensitivity can be computed as the standard deviation

of the measured power (assuming a stable radiometer). Analytically, sensitivity can be

computed as a function of radiometer properties defined in Equation 3.6. The term

Noise Equivalent Delta (∆) Temperature (NE∆T ) is often used interchangeably with

sensitivity. As can be seen in Equation 3.6, sensitivity improves (i.e. becomes smaller) as

the bandwidth (β) and/or integration time (τ) of the radiometer increases[Ulaby et al.

(1981)].

NE∆T =
TA + TN√
β ∗ τ

(3.6)

The following example illustrates the impact system generated noise has on a ra-

diometers ability to detect changes in signal noise. Lets assume we want a sensitivity

of 1 K. If there is no system generated noise (i.e. TN = 0) and the received signal at

the antenna is 200 K (i.e. TA = 200), we can then calculate our receiver sensitivity by

using Equation 3.6. Lets assume a bandwidth of 10 MHz (i.e. β = 10x106) and that our

integration time is 40 milliseconds (i.e. τ = 0.04). We can now take these values and

put them in Equation 3.6 which results in Equation 3.7.
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NE∆T =
200 + 0√

10x106 ∗ 0.04
= 1K (3.7)

Equation 3.7 gives us a result of 1 K for our sensitivity, which meets our goal. Because

we do not have an ideal radiometer (i.e. TN 6= 0), lets assume our system noise is 800

K (i.e. TN = 800). Assuming that our bandwidth (β), our integration time (τ) and

our antenna signal (TA) is the same, we can now apply Equation 3.6, which results in

Equation 3.8. This results in a sensitivity of 5 K, which is five times higher than our

ideal sensitivity of 1 K.

NE∆T =
200 + 800√

10x106 ∗ 0.04
= 5K (3.8)

As can be clearly seen, system noise makes the job of detecting changes in signal

noise more difficult[Skou and Vine (2006)]. Section 6.2.2 uses both the experimentation

and analytical methods of finding sensitivity as a cross validation of the correctness of

our SDR based radiometer.

Stability. Stability of a radiometer is a measure of the degree to which fluctuations

we see are a result of the source and not a change occurring within the radiometer.

Lets examine Equation 3.2, which defines the total power the radiometer receives. If

our bandwidth (β), power gain (G), system noise (TN), and Boltzmann constant (k)

are constant, then the system is stable. If we can assume that our bandwidth is fixed

and that our system noise (mean value) is constant, then this leaves our power gain (G)

being the uncertain variable that may cause unwanted fluctuations[Evans and McLeish

(1977)].

Radiometer instabilities are due to Low Noise Amplifier (LNAs) power gain fluctu-

ations. Two factors cause these gain fluctuations: 1) fluctuations in the LNA’s voltage

supply, and 2) fluctuation in the LNA’s physical temperature.

The impact these power gain fluctuations have on stability is given by Equation 3.9.

Where:
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• ∆TG is the noise temperature fluctuation,

• ∆G is the LNA power gain fluctuation,

• G is the ideal power gain of the LNA and,

• Tsys is the combined antenna source (TA) and system noise (TN).

∆TG = Tsys

(
∆G

G

)
(3.9)

These power gain fluctuations can be controlled by closely monitoring and control-

ling both the voltage supply and temperature of the LNAs. However, this adds levels of

complexity to the radiometer that may be impractical in some cases. As an alternative,

modifications to the basic radiometer given in Figure 3.1 have been developed to com-

pensate for these fluctuations. There are three common types of radiometers designed to

account for power gain fluctuations. They are: Dicke, Noise injection, and Polarimetric

(or Correlating) radiometers.

Dicke Radiometer. Figure 3.2 shows the block diagram of a Dicke radiometer,

which switches between measuring the source signal (TA) and a known reference sig-

nal (TR)[Dicke (1946)]. By quickly switching between the source and reference signal at

a frequency of FS, a Dicke radiometer can reduce the impact of power gain fluctuations

on its stability.

While a Dicke radiometer improves stability, it does so at the cost of not seeing the

object of interest while it is measuring the reference signal. This reduces the sensitivity

of the radiometer by a factor of 2, since half the time is used to observe the source signal.

This changes the equation for the sensitivity of a Dicke radiometer as shown in Equation

3.10.

NE∆T =
2(TA + TN)√

β ∗ τ
(3.10)
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Antenna 
TA

Gain
G

Filter/Bandwidth
ᶔ

∫ V
TN

Square-Law Detector
X2

Integration

ᶦ
Vout

±1

FS

TR

Figure 3.2 A block diagram of a Dicke radiometer

Noise Injection Radiometer. A noise injection radiometer is a variation of the Dicke

radiometer, where a variable noise signal (TI) is injected into the RF chain, as shown

in Figure 3.3. The injected noise signal power is adjusted so when added to the source

signal their sum equals the reference signal power. This improves stability by eliminating

power gain fluctuations, but increases system noise (TN). Much like the Dicke radiometer

discussed earlier the sensitivity is reduced by a factor of 2 and the sensitivity is found

to be similar to Equation 3.10 except our TA is now equal to our known noise constant

which we can define as TR.

Polarimetric Radiometer. A polarimetric (or correlating) radiometer uses two polar-

ized signals, referred to as vertically polarized (V-Pol) and horizontally polarized (H-Pol).

In order to accomplish this, an antenna with dual polarization is used [Fujimoto (1964)].

Each polarized signal is fed into the radiometer and correlated. Because the source noise

signal has polarization and the power gain fluctuations do not, the power gain fluctua-

tions can be eliminated. This reduces power gain fluctuations to increase stability, while

helping maintain sensitivity. The sensitivity of a correlating radiometer is shown in Equa-

tion 3.11, where NE∆Tsys is the NE∆T of both the vertical and horizontal receivers of

the radiometers assuming that both receivers are identical in design and function. This
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TA

V
Vout≈ 0

TI

Dicke radiometer

Loop Gain

TA’ = TA + TI

Figure 3.3 A block diagram of a Noise Injection radiometer

type of radiometer does increase the cost and complexity of the radiometer, since two

identical receivers (one for each polarization) are required.

NE∆Tsys√
2

=
NE∆TV−Pol√

2
=
NE∆TH−Pol√

2
(3.11)

3.2 Software Defined Radios Basics

A Software Defined Radio (SDR) is a device that digitizes a received RF signal as

soon as possible, and processes the digital representation of the signal using a computer,

FPGA, or dedicated System on Chip (SoC). A canonical software defined radio architec-

ture consists of a power supply, antenna, analog to digital converter, and a processing

unit to carry out radio functions in software [Mitola (1995)]. An ideal software defined

radio block diagram is shown in Figure 3.4.

A SDR can perform certain hardware functions in software (e.g. filtering), which

provides flexibility over hardware solutions. Changes can be made by simply uploading

new software or firmware to the system. This has a cost benefit as certain hardware

components are no longer needed, and changes made in software do not require hardware
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Signal Source
(Antenna) Signal Processing

(FPGA/ASIC/CPU)ADC I in-phase (ᷪ)

Q quadrature-phase (ᷪ-90)

Figure 3.4 An ideal software defined radio

to be added, removed or modified.

A more realistic software defined radio is shown in Figure 3.5, where two items have

been added. First, an amplification of the signal (power gain) is added to ensure the

signal can be detected. Second, a mixer is often used to down-convert the high frequency

RF source signal to a lower frequency so a less expensive analog to digital converter can

be used. However, if the source signal frequency is already within the range of the analog

to digital converter, then the mixer may be omitted.

Signal Source
(Antenna) Gain

G
Signal Processing
(FPGA/ASIC/CPU)ADCMixer I in-phase (ᷪ)

Q quadrature-phase (ᷪ-90)

Local 
Oscillator

Figure 3.5 A block diagram of a typical software defined radio
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Software Defined Radio Applications. Software Defined Radios (SDRs) can be used

for a variety of applications, but have been primarily used in the area of communications.

Some examples of these applications include: mobile communications, wireless local area

networks, personal area networks, and digital broadcast. They appeal to applications

where having the ability to change a modulation scheme or filter on the fly is desirable.

In these respects, SDRs often outperform traditional hardware-only radios because of

their ability to easily change their operations through software.

Early SDRs were expensive due to the cost of high speed analog to digital converters

(ADCs) and high-end Field Programmable Gate Arrays (FPGA) that were required. In

recent years, the cost of SDRs has decreased due to the cost of these key components

decreasing. Also, while the cost of SDRs has gone down, their performance has increased.

This has led to SDRs becoming feasible for use in many new ways [Jondral (2005)].

3.3 Software Defined Radio Development Platform

This section discusses the platform used to develop a software defined radio based

radiometer. The hardware and software tools used are off the shelf. First, the hardware

platform will be introduced, followed by the software platform.

3.3.1 Hardware platform

The hardware platform selected for this work is the Ettus Research Group N200 SDR

shown in Figure 3.6. Its flexible architecture and ability to support a large bandwidth

made the N200 an ideal hardware platform for software defined radio based radiometer

development. The N200 has the following features that made it desirable for our specific

application:

• Dual 14-bit ADC,

• 20 MHz bandwidth per channel,
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• Modular daughter-board system for RF front end.

Figure 3.6 The USRP N200 from Ettus Research (Image from Ettus Research Website
- www.ettus.com)

When selecting the hardware for this thesis, the requirements defined in Section 4.1

were examined. The bandwidth requirement was a deciding factor for hardware selection.

It was decided that a minimum bandwidth of 20 MHz was desired. The 14-bit ADC was

not a defined requirement, but was deemed to provide an adequate level of resolution.

The N200 has a flexible architecture through the use of daughter-boards.

Figure 3.7 shows the overall architecture of the N200 SDR. A daughter board directly

receives the RF signal and then outputs analog I (in-phase) and Q (quadrature phase)

signals that are then sampled by the N200 14-bit A/D converter.

DBSRX2 Receiver. The daughter board selected for this work was the DBSRX2,

shown in Figure 3.8. This daughter board is receive only, and operates between 800

MHz and 2400 MHz, which includes the frequency band required for this work (1400

MHz - 1425 MHz).

The DBSRX2 has the RF hardware needed to transform the received RF signal into

in-phase and quadrature-phase outputs. This includes a programmable gain amplifier, a

direct-conversion converter, a mixer, and finally a band-pass filter. Figure 3.9 provides

a block diagram of the DBSRX2. First, the signal received is amplified by the Pro-
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Figure 3.7 A block diagram of the Ettus N200 SDR. (Image from Ettus Research Web-
site - www.ettus.com)

grammable Gain Amplifier (PGA). The PGA can be configured by software. Next, the

signal goes into a direct-conversion integrated circuit (a Maxim 2112). This integrated

circuit directly converts the RF signal into analog I (in-phase) and Q (quadrature phase)

signals and is composed of an integrated mixer and band-pass filter.

These analog I and Q signals are then sent to the analog to digital converter to be

digitized. The IQ signals are transmitted as differential signals to minimize noise. Once

digitized, the digital I-Q values are sent to a FPGA to be processed, and then sent to

the PC for software based signal processing.

3.3.2 Software platform

There are two pieces of software that are used with the software defined radio: 1) the

firmware that is used in the FPGA of the N200, and 2) the software running on the host

PC.
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Figure 3.8 The DBSRX2 daughter board from Ettus Research (Image from Ettus Re-
search Website - www.ettus.com)

The firmware provides low level processing of the signal before being sent to the

software located on the PC. It also provides a link for controlling key aspects of the

software defined radio, such as power gain, bandwidth and the center frequency. This

firmware comes pre-loaded into the FPGA by Ettus Research, and can be upgraded using

tools provided by Ettus Research.

The software on the host PC performs signal processing on the I/Q data. GNU-

Radio was selected to be this software. GNUradio is an open source software package

designed for software defined radio application development. It provides a GUI frame-

work to create an interactive environment for the user, and is well supported by the N200

hardware.

GNURadio uses a combination of Python and C++, where Python handles the high

level interface and C++ is used to implement drivers and low level interfaces to the

hardware. This combination allows for a system that is easy to use, but still meets the

performance required for handling large amounts of data.

GNURadio also has a rapid development tool called GNURadio companion (GRC).

GRC is a simple to use graphical system for designing and building radio components in

software. An example of GRC is shown in Figure 3.10.
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Figure 3.9 Block diagram of the DBSRX2 daughter board.

GNURadio Companion provides common functions, such as signal sources, signal

processing and signal sinks, as blocks that can be picked and placed on the screen. Once

placed, the blocks can be wired up, much like in LabView, and the flow of data can

be controlled in this fashion. GNURadio Companion also includes blocks that allow for

building a GUI interface, which can be used to display data and control the software

defined radio.

If a block does not exist, it can be created. Because GNURadio uses Python, users

can use this powerful and flexible language to build new blocks that can be imported

into GRC.

Using GNURadio and GNURadio Companion, a software defined radio can be rapidly

built with little programming experience. The excellent support of the hardware selected,

and the ease of use made it an ideal development tool for building the necessary software

for our SDR-based radiometer.
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Figure 3.10 A screenshot of the GNURadio Companion editor program. Source: GNU-
Radio
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CHAPTER 4. SOFTWARE DEFINED RADIO BASED

RADIOMETER IMPLEMENTATION

This chapter examines the implementation of a software defined radio based radiome-

ter. First we will examine requirements of both a traditional radiometer and a Software

Defined Radio (SDR) based radiometer. Next we will map the traditional radiometer

components discussed in chapter 3 to their digital counterparts. Finally an overview of

the controls and how data is displayed of a SDR-based radiometer is discussed.

4.1 Requirements

This section discusses the hardware and software requirements used to drive the

selection of the hardware and software platforms use to implement our software defined

radio based radiometer.

Hardware Requirements. The capabilities of existing traditional radiometers were the

primary driving force in setting the requirements of our hardware development platform.

Dr. Brian Hornbuckle from the Electrical and Computer Engineering and Agronomy

department at Iowa State University was consulted with respect to key specifications of

his radiometer. Additionally, the specifications of other radiometers were examined.

Table 4.1 Required Radiometer performance

Parameter Value Units
Minimum bandwidth 20 MHz
Operational frequency 1400 - 1420 MHz
NE∆T (sensitivity) 1 Kelvin
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Table 4.1 summarizes the specification of three parameters that were decided upon

for selecting our hardware development platform, based on our investigation. This lead

to the selection of the N200 software defined radio platform with a DBSRX2 daughter

board from Ettus Research as our hardware platform. Section 3.3 provides more in depth

information on the hardware used and why it was selected.

Software Requirements. Since an objective of this work was to help make radiometers

more widely accessible to the general research and education community, a requirement

of the development software was ease of use. Additionally, the user interfaces developed

with these software tools needed to be easy to use, while providing sufficient computing

efficiency for the signal processing required for radiometry.

GNURadio met the stated requirements. It includes a supplemental software package

called GNURadio Companion (GRC), which uses a graphical interface for creating a radio

environment. GNURadio and GRC are discussed in greater detail in Section 3.3.2.

4.2 Mapping Traditional Radiometer Functions to a Software

Defined Radio Based Radiometer

The use of a software defined radio (SDR) to implement a radiometer requires map-

ping components of a traditional radiometer to SDR-based technology. This section

presents the mapping of three such components for implementing our SDR-based ra-

diometer. These components are: 1) power measurement, 2) data smoothing, and 3)

bandwidth limiting and filtering.

4.2.1 Power measurement

A traditional radiometer uses a device called a square law detector to measure power.

This device is a diode that operates in the square law region. While the diode is operating

in this region, the output voltage (Vout)is proportional to the square of the input voltage
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(Vin) and is therefore proportional to the input power (Pin), where n is the constant of

proportionality. This relationship is shown in Equation 4.1 [Department (2013)]. Figure

4.1 shows a simple circuit diagram and input and output voltages from this circuit.

Vout = nV 2
in = nPin (4.1)

Input Signal (Vin) Voltage Output (Vout)

Figure 4.1 A simple diagram of a square-law detector.

The software defined radio based radiometer operates in a similar manner as a tradi-

tional radiometer. With the SDR-based radiometer, our signal is converted to I (in-phase)

and Q (quadrature-phase) binary data. Adding the I and Q data allows us to recreate the

signal. The I and Q data contains the magnitude of the in-phase and quadrature-phase

information respectively. When summed this represents the magnitude of the original

signal. To determine the total power, the magnitude is squared to produce an output

that represents the total power of the signal (Pout). Equation 4.2 gives the mathematical

representation of a software defined radio based radiometer implementation of a square

law detector[Rashid et al. (2011)].

I2 +Q2 = Pout (4.2)
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Figure 4.2 shows the block within GNURadio Companion that performs the function

of total power measurement. In Figure 4.2, the block labeled as A performs mathemat-

ically the power detection as shown in Equation 4.2. Block C decimates the data to

reduce the sample size and thus reduce the file size of the data.

Figure 4.2 A block diagram of the power detection, low pass filter and decimation block
used for total power measurements.

For both a traditional radiometer and a SDR-based radiometer, the output of this

total power information will fluctuate rapidly. To smooth this signal we send it through a

low pass filter, which is shown in Figure 4.2 as block B. This smoothing will be discussed

in the next section.

4.2.2 Data smoothing

Output from the power detection system is noisy, which makes detecting small

changes in power difficult (i.e. hinders sensitivity). Figure 4.3 shows an example of

this noisy output from a square-law detector.

A traditional radiometer will use an integrator, which is equivalent to a low pass filter,

to smooth the output from the square-law detector. This low pass filter is implemented

as a simple RC circuit as shown in Figure 4.4. This low pass filter allows us to reduce

the noise and this results in Figure 4.5.

To understand how a low pass filter works, we can look at the step response to this

filter. Figure 4.6 shows the response in the top left and top right graph. We can now
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Figure 4.3 Power measurements from a square law detector before filtering

Figure 4.4 A simple RC circuit.

compare this analog low pass filter to our digital filter that will be discussed in more

detail.

To implement this type of filter in our SDR-based radiometer an Infinite Impulse

Response (IIR), also known as a recursive filter, is used. IIR filters are ideal for this

application as they are well suited for achieving a long impulse response without having

to perform a long convolution. The IIR filter that was created is known as a single pole

low-pass filter.

The mathematical expression used to describe this filter is a recursive function shown

in Equation 4.3. In Equation 4.3, our discrete output (y[n]) is defined as the input signal



www.manaraa.com

29

0 100 200 300 400 500 600
Time (sec)

2.00

2.05

2.10

2.15

Vo
lta

ge
(V

)

X2 Voltage vs Time

Figure 4.5 Power measurements from a square law detector after filtering.

(x[n]) added to the previous sample calculated. The coefficients, a0 and b1, then define

the response of the filter. The discrete input and output of this filter is shown in the

lower left and right of Figure 4.6. This response is calculated using Equation 4.3 and the

coefficients for a low pass filter, a0 and b1, are determined by Equation 4.4 and 0 ≤ b1 ≤ 1

[Smith et al. (1997)].

y[n] = a0 ∗ x[n] + b1 ∗ y[n− 1] (4.3)

The coefficients a0 and b1 are determined by Equation 4.4 for a low pass filter, where

0 ≤ b1 ≤ 1.

a0 = 1− b1 (4.4)

In Figure 4.4, the input is Vin, the resistance value is R, the capacitance value is C

and the output is Vout. This circuit can be represented by Equation 4.5.

Vin − Vout
R

= C
dVout
dt

(4.5)
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Figure 4.6 Graphs representing the analog and discrete response of a RC low pass filter
to a step input.

Equation 4.5 represents the differential equation relating the input voltage Vin to the

output voltage Vout. We can substitute the input to the RC circuit (Vin) as the input

to Equation 4.3, xn. The output of our RC circuit (Vout) can also be expressed as the

output in Equation 4.3 which is yn. However, in order to do this we must move from

the continuous domain to the discrete domain that our digital filter operates in. This is

done by showing the relationship between our sampling frequency fs and our period, the

time between samples, T and is shown in Equation 4.6.
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T = TimeBetweenSamples =
1

fs
(4.6)

Next we rewrite our differential equation by substituting xn and yn into Equation

4.5, which results in an approximated finite difference equation shown in Equation 4.7.

xn − yn
R

= C
yn − yn−1

T
(4.7)

We can now solve for yn algebraically and this results in our final Equation 4.8.

yn =
T

T +RC
xn +

RC

T +RC
yn−1 (4.8)

Equation 4.8 shows an IIR filter that has a frequency response that closely approxi-

mates an RC circuit. The approximation improves as T approaches zero.

a0 =
T

T +RC
(4.9)

b1 =
RC

T +RC
(4.10)

To design the filter we need to look at what our desired cut-off frequency needs to

be. For a RC filter, our resistance and capacitance define our cutoff frequency (fc) and

has the relationship shown in Equation 4.11.

fc =

√
3

2πRC
(4.11)

Given our desired cutoff frequency, we can determine our combined RC value by

rearranging Equation 4.11 algebraically to Equation 4.12.

RC =

√
3

2πfc
(4.12)

The RC value is also referred to as the time constant of the circuit and we do not need

to find the individual R and C values. An example of how we can find the coefficients of

our IIR filter, given a desired cutoff frequency of fc, is shown next.



www.manaraa.com

32

Assume, for a low pass filter, we want a cutoff frequency (fc) of 1000 Hz. Given this

and using Equation 4.12 we can determine our time constant to be 2.757 x 10−4 seconds.

If our sample rate is 1 MHz, then our T value is 1 x 10−6 second. Plugging these values

into Equation 4.8 results in the coefficient a0 = 0.0036 and b1 = 0.9964.

GNURadio includes a program that allows us to specify our filter, and it generates

the required coefficients and taps. Chapter 5 goes into more depth on this program.

4.2.3 Bandwidth limiting and filtering

Bandwidth limiting. Bandwidth limiting is the process of defining the frequency

band over which a radiometer measures power. For a traditional radiometer, this is

typically accomplished using analog filters. Within a SDR-based radiometer, bandwidth

is controlled by the sampling rate of the Analog to Digital Converter (ADC). However,

in the N200 SDR used in this thesis, the ADC clock is fixed at 100 MHz. Therefore the

FPGA decimates the data to reduce the bandwidth from the ADC, but only by integer

values of the divisor.

Filtering. There are instances when the frequency being observed requires additional

filtering (i.e. RFI mitigation, see section 6.3). Traditional radiometers deploy analog

band-pass or band-reject filters to accomplish this, while in this thesis we show similar

functionality can be obtained by implementing software defined filters.

Next we will examine on how we control key functions in our SDR-based radiometer.

These key functions have an impact on the performance of the SDR-based radiometer.

We will also look at how we display the data collected from the SDR-based radiometer.

4.3 Software Defined Radio Based Radiometer GUI

A traditional radiometer will be designed with fixed parameters such as bandwidth

and integration time. While changes can be made, it requires changes to the radiometer’s
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physical hardware. A SDR-based radiometer allows us to control several functions that

defines how it operates as a radiometer. These changes can be made while the radiometer

is operating since these operations happen in the digital domain and are defined by

software. The following items are controlled by software in our SDR-based radiometer

via the GUI interface: 1) Center frequency, 2) Bandwidth (β), 3) Integration time (τ),

and 4) Power gain.

The GUI for the SDR-based radiometer was designed knowing that these parameters

such as frequency, bandwidth and integration time can be changed. Because these con-

trols impact both the performance of the radiometer and in what frequency range the

radiometer operates in, it was important to have these controls clearly marked. Figure

4.7 shows a screen-shot of the GUI.

Figure 4.7 A screenshot of the interface made for communication with and controlling
the software defined radio

The bandwidth, β, and our integration time, τ , both impact our sensitivity or NE∆T

of the radiometer as defined in Equation 3.6. The bandwidth can be changed by changing

the sample rate of the SDR. The sample rate effectively controls the bandwidth in which

the SDR is operating. This also gives us a band-pass filter as well, since the SDR will

not respond to frequencies outside of this bandwidth. The integration time parameter is

set by the user through the GUI and allows us to change the integration time in seconds.

This directly controls the time constant for the IIR filter used to smooth the data.

The SDR-based radiometer in this thesis uses Low Noise Amplifiers (LNAs) to in-

crease the power gain of the system. The DBSRX2 hardware, described in Section 3.3.1,
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also has a Programmable Gain Amplifier (PGA) that is controlled by software. This

allows additional power gain to be added or removed as needed. Next we will also look

at how the data is displayed and stored in the software defined radiometer.

SDR-based radiometer data display. The information from the software defined radio

can be displayed through GNURadio to show relevant information to the user. Currently,

our SDR-based radiometer can display spectrum information and total power informa-

tion. Spectrum information is used to verify the signal is clean and free of interference.

Total power information is displayed as both un-calibrated values and calibrated values,

assuming the correct calibration terms have been provided. This includes a display in

a ”ticker tape” graph and as a bar graph. Figure 4.8 shows a screen-shot of the total

power display.

Figure 4.8 A screenshot showing the ticker tape display for the total power readings.
In addition, raw and calibrated noise temperature is shown below.
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CHAPTER 5. EVALUATION SETUP AND

EXPERIMENTAL DESIGN

The experiments outlined in this chapter are used to demonstrate and verify that

a software defined radio (SDR) base radiometer can perform on par with a traditional

radiometer. In addition, these experiments are designed to demonstrate that a SDR

based radiometer can provide functionality not typically found in traditional radiometers.

Four experiments are described. Experiment one verifies our SDR-based radiometer

by comparing its operation to a square-law detector, a device typically used within a

traditional radiometer. Experiment two evaluates the sensitivity and stability of our

SDR-based radiometer. Experiment three evaluates our SDR-based radiometer’s ability

to mitigate an interfering signal in comparison to the behavior of a traditional radiometer

in the presence of an interfering signal. Experiment four’s purpose is to further examine

the impact of our frequency notching approach for Radio Frequency Interference (RFI)

mitigation on radiometer sensitivity.

5.1 Experiment I - Software Defined Radiometer Verification

and Calibration

This experiment is designed to verify our SDR-based radiometer functions as ex-

pected. Its behavior is compared against an analog square-law detector, which is com-

monly used in traditional radiometers.
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To verify the results of the information that the software defined radio is obtaining a

square-law detector is used to measure the power of the incoming signal in parallel to the

SDR-based radiometer. This signal is split using a power divider so that the information

will be the same to both devices. This power divider ideally would divide the signal so

that the resulting signal is 3 dB lower, plus the insertion loss, and is equal between both

ports. The splitter used in this thesis was tested and verified that it does split the signal

with a slight difference between port one and port two. This difference was measured to

be .1 dB which is well within the .3 dB specified for this power splitter. This allows us

to verify the software defined radio with a proven system.

5.1.1 Experimental setup

Figure 5.1 shows a block diagram of the experimental setup. A matched load is used

to simulate our source signal. This matched load is then submerged in temperature

baths. These baths use Liquid Nitrogen (LN2), which is known to boil at 77 Kelvin,

and an ice water bath which is known to be at 273.15 Kelvin. The temperature of these

baths were monitored with a thermometer that had an accuracy of ±1 degree Celsius.

The load was submersed in each bath for a minimum of 2 minutes to allow it to reach the

same temperature as the bath. The physical temperature of this matched load is then

the noise temperature the radiometer sees and can be used to calibrate the radiometer.

The radiometer RF front end provides the amplification needed for our experiments.

Figure 5.2 shows an image of the RF front end, with the LNAs and band-pass filters

marked. After the signal has been amplified, we divide the signal between the square-law

detector (ADL5902) and the software defined radio (N200). The N200 is then connected

to a personal computer running XUbuntu Linux and GNURadio.

The following hardware was used and has also been marked on Figure 5.1:

1. N200 Software Defined Radio with DBSRX2 Daughter-board
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Figure 5.1 Block diagram of Experiment 1 setup.

2. ADL5902 Square-law detector

3. National Instruments USB-6009 Data Acquisition Unit (not shown in Figure 5.1)

4. ZN2PD-20-S+ Power Divider

5. 50-ohm matched load (ZL)

6. Rigol DP832 Power Supply (not shown in Figure 5.1)

7. Radiometer RF Front End

(a) 4 x Integrated Microwave Bandpass filters (1400 - 1425 MHz)

(b) 2 x Miteq AMF-3F-01400147-30-10P LNA

(c) 1 x Miteq AMF-2F-01400147-04-10P LNA
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Figure 5.2 The radiometer RF front end, with LNAs and band-pass filters used in the
experiments.

5.1.2 Data collection

Two sets of data are produced with this experiment. First, data is generated from

the software defined radio using GNURadio. Second, data is generated from a data

acquisition device (USB-6009) that is attached to the square-law detector. Data from

each is stored to a local computer running the appropriate software.

Software Defined Radio Data. The software defined radio based radiometer is config-

ured with a bandwidth of 10 MHz and an integration time of two seconds. It is centered

on a frequency of 1.406 GHz which allows it to operate within the mechanical band-pass

filters.
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The data from the software defined radio is stored in files generated from GNURadio.

GNURadio uses a sink block to output the data to either a screen, socket connection

such as TCP/IP, or a file. As shown in Figure 5.3, a file sink block is used to output the

data to a file. The flow of data to this sink is controlled by a valve block. This allows

the user to turn on and off recording of the data.

Figure 5.3 The File Sink block used in GNURadio. Source: GNURadio

There are two types of files the SDR generates. The first type of file is the I (in-

phase) and Q (quadrature phase) data points. This file is stored in little-indian format

as complex values. Due to the sampling rate, it is not uncommon for this file to grow

quite large, usually several gigabytes of data for a 10-15 minute run. However, this

file can then be fed back through GNURadio later to be played back if needed, and it

contains the information needed to completely recreate the signal.

The second file type is the total power values generated from the total power block

in GNURadio. A diagram of this block can be found in Appendix A (Figure A.1), and

its source code can be found in Appendix A. This file also uses a little-endian format,

however this file only has real values. This file is also much smaller than the file that

contains the I and Q data points due to decimation of the data. A typical file size is 50

- 100 kB for a 10 to 15 minute run.

Square-law detector data. The square-law detector used (ADL5902) outputs total

power information as an analog voltage that is linearly proportional to the RF power

measured. The Analog Devices ADL5902 is a single Integrated Circuit (IC) that contains

a square-law detector and necessary amplification for the output signal and is shown in
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Figure 5.5 . This device operates from 50 MHz to 9 GHz and can detect power as low

as -60 dBm. The output voltage from the square-law is amplified to a range from zero

to five volts with a calibrated output of 53.7 mV/dB.

Testing was done on the square-law detector to verify linearity and proper operation

of the square-law detector. This test involved sending a known signal into the square-

law detector and changing the amplitude at set intervals. This was then graphed and is

shown in Figure 5.4. This graph shows that as we changed the input power in linearly,

the output measured from the square law detector also changed linearly.

Figure 5.4 A graph of the power output of the square law detector.

To capture the voltage output from the ADL5902, a data acquisition unit (DAQ)

is used. The National Instruments USB-6009 DAQ unit was selected as it met the

requirements for an easy to use yet high enough resolution to obtain accurate information.

The USB-6009 unit has 8 analog inputs that can sample at 48 KSPS with a resolution

of 14-bits.

To use the USB-6009, a fairly simple Lab View program was created to obtain, display

and store the data from the ADL5902. This program retrieved information from the
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USB-6009 and stored the data in both Labview’s binary format and in a more human

friendly ASCII format. A GUI program, shown in Figure 5.6, is used to control and

display the data. This made obtaining the data and using the device straightforward.

Figure 5.5 The ADL50902 IC on a demonstration board.

For rapid development, the National Instruments DAQ assistant was used to quickly

configure and setup the USB-6009. Labview also includes blocks that allows us to easily

record the data to a file and to use a low pass filter. The filter used is then configured to

have a cutoff frequency that is equivalent to an integration time of 2 seconds to match

the software defined radio. These blocks made up most of the program and resulted in

a program that was quickly made. Figure 5.7 shows the blocks used and the wiring of

the blocks.

5.2 Experiment II - Sensitivity and Stability Evaluation

In this experiment, we evaluate the sensitivity and stability of a SDR-based radiome-

ter. This is evaluated both experimentally and statically.

5.2.1 Experimental setup

The experimental setup used for experiment two is the same as outlined in section

5.1.1. A longer soak time is used to verify the stability of the radiometer.
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Figure 5.6 A screenshot of the Labview GUI interface.

5.2.2 Data collection

The data collected for this experiment were the total power measurements made from

the SDR-based radiometer. These measurements uses the same method as outlined in

section 5.1.2. A longer soak time was used for this experiment where the matched load

was in LN2 for approximately five hours before the LN2 boiled out.

5.3 Experiment III - Interfering Signal Mitigation

In this experiment, we generate an interfering signal and then mitigate the signal

using a software defined filter. A square-law detector is hooked up in parallel to measure

the same signal, but is not provided with a mitigation mechanism. We then compare the

two signals to verify that the SDR-based radiometer can mitigate the interfering signal,
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Figure 5.7 A screenshot of the Labview block diagram.

while continuing to make useful total power measurements.

This experiment was designed to determine whether or not a SDR-based radiometer

can cope with an interfering signal. This test injects a known signal at 1.406 GHz to

interfere with the normal operation of the radiometer. The amplitude of this signal is

then incremented and decremented at various times during the test. This was done to

reflect a possible real world scenario and to make it easy to identify the interfering signal

with the square-law detector, which only measures power.

In order to mitigate the offending signal, a filter was designed to remove the offending

signal. The design of the filter used a program that is part of the GNURadio software

package, called the GNU Radio Filter Design tool. Figure 5.8 shows a screen shot of this

tool when designing the band-reject filter for this application.

This tool generates filter values (also called taps) that GNURadio will use for defining

the filter. The GUI program, shown in Figure 5.8, allows us to interactively create a

filter. Because this tool is part of the GNURadio package, it also includes a command
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line interface to the program. This allows us to call the program from within GNURadio

to integrate this functionality into our SDR-based radiometer.

Figure 5.8 Image of the GNU Radio Filter Design tool

5.3.1 Experimental setup

The setup for this experiment is similar to the setup outline in section 5.1. In addition,

a second software defined radio was added to inject an offending signal into the RF signal

chain. This software defined radio was configured to operate as a signal generator to

create the offending signal.

Our signal generator is the HackRF One (or just HackRF), shown in Figure 5.9.

This SDR is cheaper, and has lower specifications than the Ettus Research N200 used as

the SDR-based radiometer. However, it allows for transmission of a signal and it suits

our needs for the purpose of a signal generator. The signal the HackRF generates is a
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sinusoidal signal centered at 1.406 GHz. The amplitude of this sinusoidal signal is then

adjusted accordingly.

As stated, the quality of this SDR is lower than the Ettus Research N200 SDR. As

such the output signal is not as clean as one might expect. This can be seen in Figure

6.14 where two smaller signals are present. These are harmonics generated due to the

Local Oscillator (LO) and the Intermediate Frequency (IF) used in the setup. However,

this did not present an issue as the filter was designed to filter the main signal at 1.406

GHz and the two smaller harmonic peaks.

Figure 5.9 Image of the HackRF used to generate the offending signal. (Image from
Great Scott Gadgets - www.greatscottgadgets.com)

The HackRF generates a sinusoidal wave at a fixed frequency of 1.406 GHz and can be

seen in Figure 6.13. In this experiment, the signal amplitude is changed at different times

during the experiment. Because the signal from this device is relatively large, 26 dB of

attenuation is inserted between the HackRF and the first LNA to avoid over-powering

the LNAs.

The amplitude is controlled from a program called osmocom siggen. Osmocom was

originally developed to communicate with OsmocomSDR hardware. However, it has been
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expanded to include the HackRF and Ettus Research hardware. The osmocom siggen

program provides a GUI to set the frequency, amplitude and type of the signal generated.

5.3.2 Data collection

The data collected for this experiment includes both the total power measurements

from the SDR-based radiometer and the square-law data. Section 5.1.2 explains in detail

the setup and configuration of the equipment used to collect this data.

5.4 Experiment IV - Performance Impact of Interfering Signal

Mitigation

In this experiment we examine the impact of filtering an interfering signal on the

sensitivity of the SDR-based radiometer and how reducing our overall bandwidth affects

the total power received by the radiometer.

5.4.1 Experimental setup

In this experiment, we set up our experiment as outlined in Section 5.3.

5.4.2 Data collection

The data collected for this experiment is the total power reading measurements ob-

tained from the software defined radio. The data collection method is identical to the

method used in Section 5.1.2.
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CHAPTER 6. RESULTS AND ANALYSIS

This chapter presents the results obtained from the experiments outlined in Chapter

5. We discuss the analysis of the results and what was learned from each experiment.

This chapter concludes with a trade off analysis between an SDR-based radiometer and

a traditional radiometer in terms of cost and weight.

6.1 Experiment I - Software Defined Radio Based Radiometer

Verification and Calibration

As outlined in Chapter 5, Section 5.1, this experiment verifies the operation of a

software defined radio based radiometer. This is done by performing experiments that

are similar to the verification and calibration methods used for a traditional radiometer.

We compare our results to those of a square-law detector receiving the same signal.

6.1.1 Data collected

For this experiment, total power measurements were collected from the software de-

fined radio based radiometer and the square-law detector. This data is then calibrated

using the known physical temperature of the matched load. Table 6.1 shows the values

collected during the experiment and is used to calibrate the raw total power measure-

ments.
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Table 6.1 Total Power calibration data points

rQ Value X2 Voltage (V) Temperature (K)
.1139 1.9846 77
.1730 2.1065 271.65

6.1.2 Data analysis

To analyze the results, iPython Notebook is used to read our data and generate the

graphs used in this thesis. This tool uses Python along with HTML and Markdown code

to generate a virtual notebook for each experiment.

Software Defined Radio Data. The SDR records the total power measurements in a

binary file that either Matlab or Python can read. This file format is explained in section

5.1.2. We begin by looking at the raw or uncalibrated total power readings. This power

information is information collected after the total power radio block in GNURadio and

is explained in Chapter 4. Because the values are uncalibrated total power readings,

there are no units.
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Figure 6.1 Graph of the uncalibrated SDR total power values of Experiment I

Figure 6.1 shows the total power reading versus time. Figure 6.1 has been annotated

to show which medium the matched load has been placed in (i.e. Ice water and LN2).
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Since we know the temperatures of the ice water and LN2, we can calibrate these read-

ings to a noise temperature reading. This is done by reading a calibration file we have

stored in a csv format and solving for the slope of a line. This was accomplished using

the following code written in Python.

a=numpy . array ( [ [ rQ val [ 0 ] , 1 . 0 ] , [ rQ val [ 1 ] , 1 . 0 ] ] , numpy . f l o a t 3 2 )

b=numpy . array ( [ temp values [ 0 ] , temp values [ 1 ] ] )

z=numpy . l i n a l g . s o l v e ( a , b )

Now that we have our calibration points, we can re-graph this data as calibrated noise

temperature as shown in Figure 6.2. Figure 6.2 is also colorized to represent “warmer”

to “cooler” noise temperatures.
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Figure 6.2 Graph of the SDR calibrated noise temperature for Experiment I

Square Law Detector Data. Now that we have looked at the software defined radio

data, we want to examine the square-law detector data and then compare the two. The

square-law detector gives us power information as a voltage. This voltage corresponds

to the received power by the square-law detector

In order to compare the square-law detector to the SDR data we will also calibrate it

as a noise temperature. We can do that using the same method as the SDR and calibrate
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the voltages to the known temperature references. It can be see in Figure 6.3 that the

data from the square-law detector is very noisy. Therefore, we use a filter to smooth out

the data.
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Figure 6.3 Unfiltered data from the square-law detector collected in Experiment I

To filter the data, Python in conjunction with SciPy is used. For this experiment,

we use a low pass filter to smooth out the signal. The following code applies a Finite

Impulse Response (FIR) low pass filter that filters the data.

from sc ipy import s i g n a l

N=100 # Number o f taps

Fc=40 # Cutof f Frequency

Fs=1600 #Sample Frequency

h=sc ipy . s i g n a l . f i r w i n ( numtaps=N, c u t o f f=Fc , nyq=Fs /2)

x 2 f i l t=sc ipy . s i g n a l . l f i l t e r (h , 1 . 0 , x2 vo l t age )

Figure 6.4 shows our data after being filtered by the low pass filter. Using the same

technique as earlier, we can now calibrate the raw voltages from the square-law detector

to the noise temperature. As with thte data collected from the SDR-based radiometer,

the data from the square-law detector is calibrated to the physical temperature that our
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Figure 6.4 Filtered data from the square-law detector used in Experiment I

matched load is placed in. Figure 6.5 shows the calibrated data from the square-law

detector. This now allows us to directly compare the square-law detector to the software

defined radio data since we have a common reference point.

SDR-based radiometer vs square-law detector. We now compare the Software Defined

Radio Based Radiometer with the square-law to make sure they match. Because both the

SDR-Based Radiometer and the square-law are now calibrated to a noise temperature,

we can graph both sets of data and compare them to each other.

We can see in Figure 6.6 that both the software defined radio and the square-law

detector match up and this was analyzed to be within 0.002 Kelvin. This number was

determined by taking the difference between the average values of the software defined

radio and the square law detector over the same fifteen second period. This shows

that both the square-law detector and the software defined radio agree when properly

calibrated. This verifies that the software defined radio can indeed operate as a total

power radiometer and the data we obtain from this setup agrees with an analog and

more traditional radiometer.



www.manaraa.com

52

380 390 400 410 420 430 440 450
Time (sec)

76.0

76.5

77.0

77.5

78.0

N
oi

se
Te

m
pe

ra
tu

re
(K

)

X2 Noise Temperature vs Time

Figure 6.5 Calibrated data from the square-law detector used in Experiment I

6.2 Experiment II - Evaluation of Sensitivity and Stability

6.2.1 Data collected

This experiment examines the sensitivity and stability of a SDR-based radiometer.

The data used for the sensitivity is data that was collected to confirm the stability of the

radiometer. This data is the total power data collected from the SDR-based radiometer

over a period of approximately five hours, however only a fifteen minute block was used

for final analysis. For both sensitivity and stability, the data is calibrated using Table

6.2. A graph of the data showing the long duration soak time including indicating when

the LN2 boiled out of the vessel is shown in 6.7.

Table 6.2 Total Power calibration data points for the stability experiment

rQ Value Temperature (K)
.1132 77
.1770 271.65
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Figure 6.6 Figure showing both the SDR and square-law noise temperature data in
Experiment I

6.2.2 Data analysis

Sensitivity. Sensitivity for a radiometer is the NE∆T that was covered in chapter

3 and is found in Equation 3.6. The sensitivity can also be measured as the standard

deviation of the data that we collect from the software defined radiometer.

Table 6.3 Experimental parameters for experiment one.

Bandwidth (β) Integration Time (τ) TA + TN
10 MHz 2 sec 462 K

Python is used to calculate the NE∆T using the data from Table 6.3. Here TA is the

physical temperature of the matched load and TN is the system noise temperature of the

radiometer. The python code listed below is used to calculate the theoretical NE∆T .
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Figure 6.7 Graph of the un-calibrated total power from Experiment II while the
matched load is submerged in LN2 between 4000 and 4900 seconds.

tau = 2 # I n t e g r a t i o n Time

BSDR = 10 e6 # Bandwidth

TN = 385 # System no i s e temperature

TA = 77 # Antenna no i s e temperature

NEAT SDR = (TA+TN)/ s q r t (BSDR∗ tau )

This gives us 0.1 Kelvin for the expected NE∆T . Since the sensitivity is related to

the standard deviation of the graph, we can use Python to give us the standard deviation

of the data graphed in Figure 6.8. Figure 6.8 uses the data graphed in Figure 6.7 but

zoomed in from 4000 to 4900 seconds.

Python is used to determine the standard deviation of this range of data. The code

used is shown below and gives a result of .08 Kelvin. We can now plot both the expected

sensitivity and the actual sensitivity which is shown in Figure 6.9.

s td sdr = numpy . std ( g )

p r i n t s td sdr
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Figure 6.8 Graph of the calibrated total power from Experiment II while the matched
load is submerged in LN2 between 4000 and 4900 seconds.

While .08 Kelvin is lower than the calculated sensitivity, it is still quite acceptable.

As discussed in chapter 4 and shown in Table 4.1, our target NE∆T is one Kelvin or less.

Therefore our actual performance of .08 Kelvin still meets our radiometer requirement.

Stability. To verify stability of the radiometer, we look to see how much change the

radiometer records over a relatively long period of time. To test this, a matched load

was submerged in a liquid nitrogen bath for an extended period of time, in this case for

fifteen minutes. The readings were then examined to study the trend of the data. The

data is graphed in Figure 6.8.

We can use Python to calculate a second order polynomial to create a line to fit the

data in Figure 6.8. An ideal line would be flat to show no overall change with the data.

In Figure 6.10 we can see that the line and the data does not change more than 0.05

Kelvin over this fifteen minute period.
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Figure 6.9 Graph of the calibrated total power with expected and actual sensitivity.

6.3 Experiment III - Interfering Signal Mitigation

The addition of an unwanted interfering signal has an adverse effect on how a ra-

diometer operates[Ellingson et al. (2003)]. This is a growing problem for all radiometers,

but is a greater issue for radiometers used in orbiting spacecraft to observe the Earth

as they see large areas that could contain interfering signal sources [Misra et al. (2012)].

Even though the band we are working in (i.e. 1.4 GHz) is an internationally protected

frequency, there have been both intentional and unintentional signal sources in this band

detected by current space borne radiometers that have caused interference [Forte et al.

(2013)].

6.3.1 Data collected

The data collected for Experiment III is the total power values from the SDR-based

radiometer and the voltage data from the square-law detector. These values are cali-

brated using the data points provided in Table 6.4. These values differ from the previous

tables because the filter is turned on. This changes the performance of the SDR-based
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Figure 6.10 Graph of the calibrated total power over a period of 15 minutes with a best
fitted line.

radiometer and results in different rQ values. The voltages are higher due to the presence

of the offending signal.

Table 6.4 Total Power calibration data points

rQ Value X2 Voltage (V) Temperature (K)
.0361 2.1234 77
.0623 2.1872 271.65

6.3.2 Data analysis

We begin by looking at what happens to our total power readings when no RFI

mitigation is used. As stated in Section 5.3.1, the frequency of the offending signal will

not change, but the amplitude will. This results in clear indications of the total power

changing as the amplitude of the offending signal changes.

It can be seen that there are pulses that occur in Figure 6.11 that correspond to

changes in the amplitude of the offending signal that affect our total power readings.

These same pulses can be seen in the square-law detector data shown in Figure 6.12.
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Figure 6.11 Graph showing the unfiltered total power measurements of the software
defined radio

We can see in both the software defined radio and the square-law detector that there

is an interfering signal. If we now look at the spectrum view of the software defined

radio, shown in Figure 6.13, we can see the signal in question occurs at 1.406 GHz.

The square-law detector has no frequency information, so our only method to detect an

interfering signal is by looking at the total power readings. In Figure 6.12 we can see

the spikes in the square-law data, however, we do not know where in the spectrum the

offending signal is located.

Since we know where the offending signal is located for the SDR-based radiometer,

we can design a filter to remove this signal. In GNURadio, we can specify both the

frequency and the bandwidth that we desire for this band-reject filter. Ideally we want

to keep the bandwidth of the filter as tight as possible to the offending signal, while

making sure our filter is effective in removing the signal. Figure 6.14 shows the spectrum

display of the software defined radio while filtering the offending signal.

Since we have now removed the offending signal, we want to re-run our experiment

and once again compare the difference between the software defined radio and the square
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Figure 6.12 Graph showing the raw total power read from the square-law detector with
an interfering signal.

Figure 6.13 Image showing the spectrum view of the SDR-based radiometer with no
RFI mitigation.

law detector. We can begin by looking at the software defined radio total power readings.

Figure 6.15 shows a calibrated graph of the noise temperature seen by the software defined

radio. This graph is similar to graphs we expect from a total power radiometer. However,

we want to compare this to our square-law detector as well.

Figure 6.16 shows both the software defined radio and the square-law detector cali-

brated total power readings. In this graph you can see that the software defined radio

is able to make normal readings where the square-law detector still shows changes in

amplitude corresponding to offending signal pulses, which would make both calibration
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Figure 6.14 Image showing the spectrum view from the SDR-based radiometer filtering
the offending signal
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Figure 6.15 Graph showing the calibrated total power readings with the filter removing
the offending signal

and obtaining useful data difficult.

Filter delay. It should be noted that when doing data analysis, that there will be

some delay due to two factors. First, there is a delay in the software defined radiometer

due to the integrator that is used. This creates a time delay as the integrator accumulates

information and then settles. We use fairly large integration times, usually in seconds so

this can add a significant delay. Second we do have a smaller delay in the decimation and

low pass filter also used in the software defined radiometer. These are Finite Impulse

Response (FIR) filters and thus have a delay given in Equation 6.1, where N is the
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Figure 6.16 Image of the offending signal being filtered out by the SDR. It can be seen
that the signal is no longer visible.

number of taps generated and Fs is our sampling frequency, in our case 10 MHz.

(N − 1)

(2 ∗ Fs)
(6.1)

The taps value is generated by Python using the filter design program. For this

experiment, the number of taps generated was 18,181. Taking this and our sampling

rate into account, our FIR filter only delays the signal by 9 milliseconds.

A final note on aligning the square-law detector and the software defined radiometer

data. Both systems have a record function and must be started manually by the user.

They also run on separate computers. Therefore, there is a human error that also gets

introduced to the system as well. This is usually no more than 1 or 2 seconds. But in

this experiment it was noted that there was a slightly longer delay between the two of

about 4 seconds.
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6.4 Experiment IV - Performance Impact of Interfering Signal

Mitigation

The goal of this experiment is to examine what affect adding a filter has on the

performance of the radiometer. While we have demonstrated we can filter an offending

signal, this comes at a cost. This experiment examines the impact that filtering out

bands has on the measurement of total power and radiometer sensitivity.

6.4.1 Data collected

The data collected for this experiment is shown Table 6.5 and Table 6.6, and the

remaining data is generated from Equations 6.2 and 6.3. This data will be examined

next.

Table 6.5 Measured sensitivity and Bandwidth of Filter

NE∆ T (K) Bandwidth (MHz)
.139 .125
.141 .250
.143 .500
.147 1
.153 2
.166 3
.181 4
.195 5
.234 6
.252 7
.318 8
.450 9
1.45 10

6.4.2 Data analysis

In Experiment IV, we examine the performance of a software defined radiometer when

a filter is used. Recalling the equation for NE∆T from Equation 3.6, our sensitivity
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Table 6.6 Measured Total Power and Bandwidth of Signal

Total Power Value (rQ) Bandwidth (MHz)
.003 .125
.006 .250
.012 .500
.025 1
.050 2
.071 3
.101 4
.125 5
.140 6
.170 7
.200 8
.230 9
.250 10

is a function of the amount of noise from both the antenna (TA) and the addition of

system noise (TN). Sensitivity is also a function of the radiometer’s bandwidth (β) and

integration time (τ).

Our integration time is controllable, and can be set using the GUI panel of the

software defined radio. In a typical radiometer, we often do not have any control of the

bandwidth. It is often set by the mechanical band-pass filters that are in place and the

square-law detector circuit to measure the noise power. In a SDR radio, we have more

control over bandwidth as we can change our sampling rate which in turns controls our

bandwidth. There is a limit as larger sampling rates require higher performance ADCs

and greater computing speed.

Recall from Experiment III, in section 6.3, where we filtered out an offending signal.

While we were able to filter out the offending signal and resume total power measure-

ments, it comes at the cost of reducing the overall bandwidth available for power detec-

tion. In this experiment, we examine how this impacts sensitivity based on Equation

6.2.
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NE∆T =
TA + TN√

(β − βfilter)τ
(6.2)

Because we are notching out a portion of the bandwidth in order to remove the

offending signal, this also removes that bandwidth for total power detection. As the

bandwidth of the filter (βfilter) increases, the more bandwidth that is subtracted from

the total bandwidth (β) available. Equation 6.2 accounts for this loss by subtracting the

filter bandwidth (βfilter) from the total bandwidth (β).
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Figure 6.17 Graph of the calculated NE∆T , the proposed limit for the sensitivity of
the radiometer, and the measured standard deviation with repsect to filter
bandwidth.

We can graph the expected response of the NE∆T by adjusting the values of βfitler

to range from a narrow-band filter, in our example 125 kHz, all the way to 9.99 MHz

or nearly all of the bandwidth. Figure 6.17 shows the expected exponential response of

NE∆T as the size of the filter increases.

Figure 6.17 shows measured standard deviation points for the SDR-based radiometer

for different filter sizes. These filter sizes and collected data are found in Table 6.5. It can

be seen in Figure 6.17 that there is a good correlation between the expected sensitivity

of the radiometer and the measured sensitivity of the radiometer.
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Figure 6.18 Graph of the total power measured and theoretical power versus the band-
width of the measured signal.

Finally a line is added to Figure 6.17 to show a possible limit of when we may have

filtered too much. In this example a NE∆T of 0.2 Kelvin is used. In Figure 6.17 it

can be seen that at about 5 MHz, our NE∆T exceeds our threshold of 0.2 Kelvin. This

would mean that to meet this performance criteria we would need to not exceed 5 MHz

for our filter size. This is assuming our integration time (τ) and the bandwidth (β) is

held constant.

We now look at the relationship of the total power received as the bandwidth de-

creases. Figure 6.18 shows both the measured total power received and the expected

total power received as the bandwidth of the filter increases.

The total power is calculated from Equation 3.2 and is based on the system noise

(TN), the antenna (TA), the bandwidth (β) and the power gain (G) of the amplifiers

used. Our power gain and noise temperatures are fixed, and in this experiment we use a

system gain of 30 dB. This represents the power gain that we see with the three LNAs

used minus any losses or attenuation placed in the RF chain.
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The change in this experiment is the amount of bandwidth seen by the SDR-based

radiometer. Again, we can modify Equation 3.2 by subtracting the filter bandwidth

(βfilter) from the total bandwidth available and this is shown in Equation 6.3.

Pout = k(β − βfilter)G(TA + TN) (6.3)

To compare this theoretical power to the actual power measured, we collected the

rQ values by once again creating different filter sizes and then measuring the rQ values.

These values can be found in Table 6.6 and are added as dots to Figure 6.18. This

also shows a very good correlation between the expected total power received and the

measured total power received for Experiment IV.

6.4.3 Usage scenario

Application with Soil Moisture Readings. A common application of radiometers is

in the measurement of soil moisture. All materials naturally emit RF energy due to

the random excitation by the electrons in the object. The amount of noise that gets

generated varies by temperature and the amount that reaches the antenna varies by

the amount of moisture in the soil. If we calibrate the radiometer to two known soil

conditions, then we can measure the various levels of soil moisture in the soil. We will

assume the soil is at a constant temperature during the observation. We will look at the

percentage of moisture in the soil, which will vary from zero percent or dry soil to one

hundred percent or very wet soil. The drier the soil, the more thermal noise we receive

and the ”warmer” the noise temperature. Wet soil on the other hand attenuates the

thermal noise and shows up as a ”cooler” noise temperature.

Using the SDR-based radiometer, we can configure it to observe a soil sample area.

Since we do not have an antenna hooked up, we will simulate this by using a matched
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load submerged in two reference temperatures. We will use the ice water bath and LN2

bath that was used in previous experiments for our reference temperatures.

Figure 6.19 shows the data collected from Experiment I. If we assume that our LN2

is dry soil and that our ice water bath is wet soil, we can now interpolate the data

to this scale and show the information we obtained in Experiment one as both a noise

temperature and soil moisture.
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Figure 6.19 Plot of the noise temperature of Experiment I with soil moisture percentage
added.

While this demonstrates that we can calibrate our total power readings with a soil

moisture percentage, we would use actual field tests to calibrate the radiometer. In

addition, we could also calibrate to soil moisture content instead of a percentage if desired.

Both methods have been done with traditional radiometers[Jonard et al. (2011)][Shi et al.

(2003)].

Mitigating interference. Experiment III demonstrates that an offending signal will

impact and cause the total power received to increase. This increase in total power will

then invalidate our calibration of the SDR-based radiometer. This will result in a spike

as shown in Figure 6.11. This spike shows a higher than normal total power which will
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result in a higher noise temperature. A higher noise temperature will then cause the

SDR-based radiometer to show drier soil conditions than what is actually present.

By mitigating the interfering signal the SDR-based radiometer is able to make cal-

ibrated soil moisture measurements even with the signal present. Figure 6.15 demon-

strates the SDR-based radiometer making total power measurements with an offending

signal present.

Soil moisture measurements can continue with an offending signal present, however

there is an impact on the system when filtering out this signal. This is covered in Section

6.4. Because of this impact, re-calibration of the SDR-based radiometer still needs to

take place.

Example experiment. An example of how a SDR-based radiometer would mitigate

a signal for a soil moisture reading is outlined next. The SDR-based radiometer is

configured to record both total power measurements and the in-phase and quadrature-

phase (i.e. I and Q) data. The recorded data is then analyzed after the experiment is

over and it is observed that the total power readings have erratic readings. Displaying

the frequency and magnitude information that is generated from the I/Q data shows an

interfering signal is present. A band-reject filter is then designed to notch the offending

signal out from the data presented. The experiment can now be re-played with the filter

active and new total power measurements are now recorded with out the offending signal.

As discussed in Section 6.4, the performance (i.e. sensitivity) of the radiometer

will change depending on the bandwidth of the filter used for the signal. Figure 6.18

however, shows that the relationship between the bandwidth of the signal and the total

power received is a linear relationship and can therefore be predicted. We can therefore

compensate for the filter to maintain the calibration of the radiometer.
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6.5 Advantages of a Software Defined Radio Based

Radiometer

A study was conducted on what benefits a software defined radio based radiome-

ter would have over a more traditional radiometer. We focused on three main areas;

cost, weight and size, and the value a SDR-based radiometer can add over traditional

radiometers.

6.5.1 Cost benefits

Software defined radios have become more commonplace in recent years and this has

generated a number of Commercial Off The Shelf (COTS) solutions. A COTS solution

is often a lower cost solution due to the mass manufacturing that takes place. This

has driven the cost of many SDRs to under one thousand dollars, while still having

excellent performance characteristics. The N200 SDR purchased for this research cost

fifteen hundred dollars and the daughter-board approximately cost one hundred and fifty

dollars. Other software defined radios however have come out on the market since then.

Ettus, for example, has some that are below one thousand dollars and the author has

also obtained the HackRF One SDR that now sells for three hundred dollars. The main

difference between software defined radios on the market is in their resolution and the

bandwidth they support.

As seen in Table 6.7, even the higher cost Ettus research equipment is a lower cost

option than the custom built radiometer in use at Iowa State University, and even a

comparable off the shelf radiometer. It should be noted that the radiometer in use at

Iowa State University is also a dual polarization radiometer so there are two RF front

ends and two ADCs that feed into a FPGA board. It would be quite easy to add dual

polarization to the Ettus N200 SDR as it does support two daughter-boards. This would

increase the cost to $2,179 for the additional LNAs and daughter-board.



www.manaraa.com

70

Table 6.7 Cost Analysis

Device Quantity Cost
SDR Solution
N200 SDR 1 $1515
LNA at $60 ea. 3 $180
DBSRX2 Daughter-board 1 $152
GNURadio 1 $0
Total $1847
ISU Radiometer
LNA, FPGA, ADC, Microcontroller and power supplies 1 $10,000
Commercial Off the Shelf Unit
Spectracyber 1420 MHz Hydrogen Line Spectrometer 1 $2,650

The largest cost benefit is that key components that you find in a radiometer, the

filters and square-law detector, can be performed in software instead of needing additional

equipment. The system is also much more frequency agile, which means it can work over

a broader range of frequencies than most traditional radiometers, with very little change

in hardware and in some cases may require no change in hardware. The Ettus N200, for

example, uses daughter-boards to provide the RF interface. While these boards provide a

high quality RF signal, it does come at a cost and are usually designed for certain bands

of frequencies. Other low cost SDRs, however, also support a wide range of frequencies.

The HackRF, for example, works from 10 MHz to 6 GHz, but does so at the cost of lower

resolution, less power gain in its front-end, and supports a lower bandwidth.

6.5.2 Weight and component size benefits

A typical radiometer has many components that are involved in its design. This

includes filters, LNAs, and the power detection (i.e. square-law detector) used. These

components add weight, size and costs to a radiometer. A software defined radio however

digitizes the signal and we are able to replace the filters and square-law detector with

their software equivalent. While a software defined radio does add an ADC and usually

a FPGA to perform signal processing, advances in semiconductor technology have con-
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tinued to shrink these components. These components are also lighter than the filters

often used in traditional radiometers. Table 6.8 displays the mass for the SDR-based

radiometer built and the ISU Radiometer. The ISU Radiometer is a representation of

most traditional radiometers.

Table 6.8 Weight Analysis

Device Mass
SDR Solution
N200 SDR 1.2 kg
LNA at .03 kg ea .09 kg
DBSRX2 Daughter-board .1 kg
Total 1.39 kg
ISU Radiometer
LNA, FPGA, ADC, Microcontroller and power supplies 22.7 kg
Commercial Off the Shelf Unit
Spectracyber 1420 MHz Spectrometer (estimated) 6 kg

Size is another benefit, since semiconductor technology has continued to shrink com-

ponents. Again, since items like the filters and square-law detector are replaced with

software implementations, this helps to reduce the overall size.

6.5.3 Value added benefits

A SDR-based radiometer adds additional value for two reasons. One, it is able to

work with both frequency and magnitude information, where a traditional radiometer

does not. This allows for additional analysis on the signal and can help identify issues

such as an interfering signal, which was demonstrated in this thesis.

Second, we are able to have an agile system that is able to adapt to changing con-

ditions with very little or no change to hardware. Different types of radiometers can be

implemented such as a Dicke radiometer, dual polarization radiometer, or a radiometer

that can perform Stokes parameters. It is also possible to implement new types of ra-

diometers that have not been developed yet. Finally, since we have both frequency and
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power information, we can create a system that is able to adapt to changing conditions,

such as dealing with an interfering signal.

6.6 Drawbacks of a SDR-based Radiometer

Although we have outlined a number of advantages of using a COTS SDR-based

Radiometer and how a SDR can add additional value to the radiometer system, there

are some disadvantages to a SDR-based Radiometer.

6.6.1 Power consumption

One of the largest drawbacks to a SDR-based radiometer can be in the power con-

sumption of the SDR. With the move to perform functions such as power detection and

filtering we now require additional computational power to perform these tasks. With

those computational cycles additional power is now required. The use of FPGAs and

SoC can help to minimize these power concerns as they are more efficient than using a

PC.

Power and CPU requirements also increase as we add additional functionality such as

filtering an offending signal. While these additions may not require additional hardware,

it can require additional processor and memory requirements. An increase and pro-

cessing requirements will also increase power requirements and can also add additional

requirements in cooling.

6.6.2 Bandwidth constraints

While SDR technology has advanced, bandwidth is still a constraint that affects SDRs

and in turn a SDR-based Radiometer. Bandwidth plays a critical role in a radiometer’s

sensitivity as explained in this thesis, therefore the fact that many SDRs are limited in

bandwidth does create a disadvantage. In many cases, this bottleneck takes place in
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both the transport and processing of large bandwidth systems. This also relates to the

power consumption disadvantage since larger bandwidth also means requiring additional

computational cycles.
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CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis we have shown that a SDR-based radiometer, using off the shelf com-

ponents, is able to perform comparable to a traditional radiometer. Additionally, it was

demonstrated that our SDR-based radiometer could be easily extended to mitigate radio

frequency interference.

7.2 Future Work

Two possible future work items are: 1) moving the signal processing to a dedicated

processor, and 2) building more complex radiometer systems (e.g. Dicke radiometer).

These topics will be covered in the following paragraphs.

Removing the PC. For this thesis, we used software that would run on a PC or

comparable computer system running a full operating system such as Linux. This allowed

for rapid development by using software tools such as GNURadio to develop the SDR-

based radiometer. While this is a great platform for prototyping a SDR-based radiometer,

it does require hardware that is capable of running a full operating system and the

associated software. Some radiometer applications would find this acceptable, however,

other remote sensing applications (e.g. space satellite) would require a more efficient

configuration. One solution is to move the signal processing from the PC to a Field

Programmable Gate Array (FPGA) or an Application-Specific Integrated Circuit (ASIC)

to improve efficiency.
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Implementing different types of radiometers. This thesis focused on implementing a

simple total power radiometer in software. While this radiometer is effective, it relies on

the fact that the components of the radiometer are stable. Other types of radiometers

have been developed that reduce this need.

A common method is a Dicke radiometer, which was covered in this thesis. A future

work for our SDR-based radiometer would be to use a digitally generated noise source,

such as a Gaussian noise source, and then switch between the antenna and this known

noise source. This noise source could also be adjusted in software, therefore stability of

the noise source would not be an issue.

Figure 7.1 A screenshot of an implementation of a correlating radiometer in GNURadio
Companion.

Another method to improve stability and sensitivity is to correlate against a second

input. The second input could be another antenna looking at the same source, or could

be two polarizations from the same antenna[Clapp and Maxwell (1967)]. This results in

a two receiver system looking at the same source with two signal outputs, S1 and S2.

Since we are looking at the same source, both signals will be correlated in time, and

when multiplied they will provide an output proportional to the strength of the source

signal. The noise introduced by each receiver will then have a lower correlation due to

the random nature of the noise. This results in a radiometer with greater sensitivity due

to the reduction of the noise, even though two receivers are used [Fujimoto (1964)].
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The N200 software defined radio was chosen as it is capable of having two different

daughter-cards plugged in. Therefore, it is possible to have both sources enter the soft-

ware defined radio and once digitized we can sum the magnitudes of the two incoming

sources. This is easy to do and is shown in Figure 7.1. Although Figure 7.1 shows a cor-

relating SDR-based radiometer, it has not been tested. In theory, this should correlate

the signal and improve the sensitivity of the radiometer. Additional experimentation

would be required to confirm that this implementation operates as expected.
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APPENDIX A. SOURCE CODE

This appendix contains a copy of the source code used to create a total power ra-

diometer in software and software that is able to load and parse information stored from

this SDR-based radiometer. The first code displayed is the source code that creates the

total power radiometer in software and analyzes the data generated from the SDR-based

radiometer. The first code is the heir block created that detects the power and smooths

the data. An heir block is a user created block that is used in GNURadio Companion.

The second code supplied is Python code that could be used to read the data generated

from the SDR-based radiometer and plot it. This provides an example of reading and

parsing data generated from our SDR-based radiometer.

The code included in this appendix is provided as a point of reference. It may be

out of date or incomplete. Copies of this thesis’ source LATEXcode, most experimental

data, and additional code used may be found on the author’s GitHub repository, https:

//github.com/matgyver/Radiometer-SDR-Thesis.

Python code for total power radiometer

This code defines a custom block in GNURadio Companion (GRC) that detects

power, smooths the data and then decimates the data to reduce the storage size. This

heir block may then be imported in GNURadio Companion and used like any other block

in GRC. A screenshot of this block is shown in Figure A.1.

https://github.com/matgyver/Radiometer-SDR-Thesis
https://github.com/matgyver/Radiometer-SDR-Thesis
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Figure A.1 Blocks used for creating a total power radiometer in software. Source:
GNURadio Companion

Total Power Radiometer Block

#!/usr/bin/env python

##################################################

# Gnuradio Python Flow Graph

# Title: Total Power Radiometer

# Author: Matthew Nelson

# Description: Blocks for power detection , integration and

LPF for a total power radiometer

# Generated: Sun Apr 12 23:03:59 2015

##################################################

from gnuradio import blocks

from gnuradio import filter

from gnuradio import gr

from gnuradio.filter import firdes

class TPR(gr.hier_block2):

def __init__(self , integ=1, samp_rate=1, det_rate =1):

gr.hier_block2.__init__(

self , "Total Power Radiometer",
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gr.io_signature (1, 1, gr.sizeof_gr_complex *1),

gr.io_signature (1, 1, gr.sizeof_float *1),

)

##################################################

# Parameters

##################################################

self.integ = integ

self.samp_rate = samp_rate

self.det_rate = det_rate

##################################################

# Blocks

##################################################

self.single_pole_iir_filter_xx_0 = filter.

single_pole_iir_filter_ff (1.0/(( samp_rate*integ)

/2.0), 1)

(self.single_pole_iir_filter_xx_0).

set_processor_affinity ([1])

self.blocks_keep_one_in_n_4 = blocks.keep_one_in_n(

gr.sizeof_float *1, samp_rate/det_rate)

self.blocks_complex_to_mag_squared_1 = blocks.

complex_to_mag_squared (1)

##################################################

# Connections

##################################################
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self.connect ((self.blocks_complex_to_mag_squared_1 ,

0), (self.single_pole_iir_filter_xx_0 , 0))

self.connect ((self.blocks_keep_one_in_n_4 , 0), (self

, 0))

self.connect ((self , 0), (self.

blocks_complex_to_mag_squared_1 , 0))

self.connect ((self.single_pole_iir_filter_xx_0 , 0),

(self.blocks_keep_one_in_n_4 , 0))

def get_integ(self):

return self.integ

def set_integ(self , integ):

self.integ = integ

self.single_pole_iir_filter_xx_0.set_taps (1.0/(( self

.samp_rate*self.integ)/2.0))

def get_samp_rate(self):

return self.samp_rate

def set_samp_rate(self , samp_rate):

self.samp_rate = samp_rate

self.single_pole_iir_filter_xx_0.set_taps (1.0/(( self

.samp_rate*self.integ)/2.0))

self.blocks_keep_one_in_n_4.set_n(self.samp_rate/

self.det_rate)
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def get_det_rate(self):

return self.det_rate

def set_det_rate(self , det_rate):

self.det_rate = det_rate

self.blocks_keep_one_in_n_4.set_n(self.samp_rate/

self.det_rate)
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Python code for analyzing data

IPython notebooks was used to perform an analysis on the data used in this thesis.

The code presented here is an example of using iPython to read and parse data from

the SDR-based radiometer. The Markdown language as well as some HTML is used to

create easy to read pages that include the python code, generated graphs and descriptive

text.

Total Power Radiometer

#-*- coding: utf -8

#Radiometer Parsing Function

#This code shows an example of reading in and plotting data

that is outputted from a GNURadio GRC file.

#In this example a Total Power Radiometer is developed in

GNURadio GRC and uses the File Sink function to store the

data.

#The plot then shows the total power output from the

radiometer as a matched load is submerged in Liquid

Nitrogen ,

#then Ice Water and then left to dry.

# - - -

#

### Read the data

# Import Needed functions
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# Import needed libraries

from pylab import *

import pylab

import scipy

import numpy

import scipy.io as sio

import csv

# Use this to set the filename for the data file and CSV

Calibration file.

tpr = ’tpr_2014 .06.12. Lab0.dat’

calib = ’tpr_calib_2014 .06.12. Lab0.csv’

x2_data = ’tpr_x2_2014 .06.12. Lab0.csv’

# Uses SciPy to open the binary file from GNURadio

f = scipy.fromfile(open(tpr),dtype=scipy.float32)

# Because of the valve function in GNURadio , there are zeros

that get added to the file. We want to trim out those
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zeros.

# In[5]:

f = numpy.trim_zeros(f)

# Create an index array for plotting. Also , since we know

the interval the data is taken , we can convert this to an

actual time.

# In[6]:

y = numpy.linspace (0,(len(f)*.5),numpy.size(f))

### Plot the data

# In[7]:

plot(y,f)

xlabel(’Time (sec)’)

ylabel(’rQ Values ’)

title(’rQ vs Time’)

grid(True)

pylab.show()
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# ## Calibration

# The rQ values are the raw values from the total power

radiometer and are uncalibrated. While the graph shows

the change in the total power recorded and shows that the

radiometer can detect changes in noise temperature , it has

no other meaning than that. What we want is to show what

the total power is in relation to a noise temperature.

Since we have recorded the values of the rQ at fixed and

known teperatures , we can create a calibration line and

calibrate the radiometer. For this experiment , we found

that the following values matched our two known

temperatures.

#

# |rQ Value|X^2 Voltage|Temperature

# |--------|-----------------------

# |.0977 | 1.9617 |77 K

# |.1507 | 2.085 |273.15 K

#

# We can now solve for y = mx + b since we have two

equations and two unknowns.

#

# To work with this , a calibration file is created. This is

a very simple CSV file that contains 3 values: The raw rQ

value , the raw voltage from the square -law detector (

discussed later) and the observed temperature. The table
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above would then look like the following in the file.

# ‘‘‘

# .0977,1.9617,77

# .1507 ,2.085 ,273.15

# ‘‘‘

# - - -

# We need to read in the values from our CSV file that

contains the values

# In[67]:

read_csv = open(calib , ’rb’)

csvread = csv.reader(read_csv)

rQ_values = []

temp_values = []

voltage = []

for row in csvread:

rQ ,volt ,temp = row

rQ_values.append(float(rQ))

voltage.append(float(volt))

temp_values.append(float(temp))

read_csv.close ()

a = numpy.array ([[ rQ_values [0] ,1.0] ,[ rQ_values [1] ,1.0]] ,

numpy.float32)
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b = numpy.array([ temp_values [0], temp_values [1]])

z = numpy.linalg.solve(a,b)

print z

# Now we apply these values to the array that holds our raw

rQ values

g = f*z[0]+z[1]

# Now we can re-plot the graph but this time with the

calibrated noise temperatures

plt.figure ()

plot(y,g)

xlabel(’Time’)

ylabel(’Noise Temperature (K)’)

title(’Temp vs Time’)

grid(True)

pylab.show()

# This is looking better , but the time at the bottom doesn’t

have much meaning. Since we know the sample rate of the

Software Defined Radio , we can calculate the time interval
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between each sample.

# - - -

# # Square -law data

#

# We now want to look at the data from the Square -Law

detector to verify the operation of the SDR. In the

experiment that was conducted above , a power splitter was

used to split the RF signal so that one went to the SDR

and the other to a square -law detector (with a 3.1 dB loss

though). Therefore both data should be the same. Let’s

read and then plot this data.

read_csv = open(x2_data , ’rb’)

csvread = csv.reader(read_csv)

dummy = []

x2_voltage = []

for row in csvread:

dummy ,x2voltage = row

x2_voltage.append(float(x2voltage))

read_csv.close ()

# Like the SDR data , we want to have a time reference at the

bottom.
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w = numpy.linspace (0,(len(x2_voltage)*.01),numpy.size(

x2_voltage))

plt.figure ()

plot(w,x2_voltage)

xlabel(’Time (sec)’)

ylabel(’Voltage (V)’)

title(’X^2 Voltage vs Time (Noisy)’)

grid(True)

pylab.show()

# The Square -law detector doesn’t have a filter on it unlike

the data we get from the SDR. The GNURadio program takes

the data and applies a Low Pass Filter to "clean up" the

information. We need to do the same with our Square -law

data.

from scipy import signal

N=100

Fc=2000

Fs=1600

h=scipy.signal.firwin(numtaps=N, cutoff =40, nyq=Fs/2)

x2_filt=scipy.signal.lfilter(h,1.0, x2_voltage)

plt.figure ()
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plot(w,x2_filt)

xlabel(’Time (sec)’)

ylabel(’Voltage (V)’)

title(’X^2 Voltage vs Time’)

axis([0, 610, 1.94, 2.12])

grid(True)

pylab.show()

# Now we wish to calibrate this data as well. We will use

the same file and use the calibration points in that file.

a = numpy.array ([[ voltage [0] ,1.0] ,[ voltage [1] ,1.0]] , numpy.

float32)

b = numpy.array([ temp_values [0], temp_values [1]])

z = numpy.linalg.solve(a,b)

print z

x2_calib = x2_filt*z[0]+z[1]

plt.figure ()

plot(w,x2_calib)

xlabel(’Time (sec)’)

ylabel(’Voltage (V)’)

title(’X^2 Noise Temp vs Time’)

axis([0, 610, 70, 300])
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grid(True)

pylab.show()

# This looks to be the same as our SDR graph , but let’s

overlay them to make sure

plt.figure ()

plot(w,x2_calib ,’r’,label=’X^2’)

plot(y,g,’b’,label=’SDR’)

xlabel(’Time (sec)’)

ylabel(’Voltage (V)’)

title(’Noise Temperature vs Time’)

axis([0, 610, 70, 300])

grid(True)

legend(loc=’lower right ’)

# We have some timeshift due to two reasons. One , the

timing isn’t always perfect when starting the collection

of the two data sets. And two , we get a timeshift from

filtering the square -law data

pylab.show()


	2016
	Implementation and evaluation of a software defined radio based radiometer
	Matthew Erik Nelson
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	2. RELATED WORKS
	2.1 Digital Radiometers
	2.2 Software Defined Radio Based Radiometers
	2.3 Radio Frequency Interference (RFI) Mitigation

	3. BACKGROUND
	3.1 Radiometer Basics
	3.1.1 Power measurement
	3.1.2 Radiometer performance metrics

	3.2 Software Defined Radios Basics
	3.3 Software Defined Radio Development Platform
	3.3.1 Hardware platform
	3.3.2 Software platform


	4. SOFTWARE DEFINED RADIO BASED RADIOMETER IMPLEMENTATION
	4.1 Requirements
	4.2 Mapping Traditional Radiometer Functions to a Software Defined Radio Based Radiometer
	4.2.1 Power measurement
	4.2.2 Data smoothing
	4.2.3 Bandwidth limiting and filtering

	4.3 Software Defined Radio Based Radiometer GUI

	5. EVALUATION SETUP AND EXPERIMENTAL DESIGN
	5.1 Experiment I - Software Defined Radiometer Verification and Calibration
	5.1.1 Experimental setup
	5.1.2 Data collection

	5.2 Experiment II - Sensitivity and Stability Evaluation
	5.2.1 Experimental setup
	5.2.2 Data collection

	5.3 Experiment III - Interfering Signal Mitigation
	5.3.1 Experimental setup
	5.3.2 Data collection

	5.4 Experiment IV - Performance Impact of Interfering Signal Mitigation
	5.4.1 Experimental setup
	5.4.2 Data collection


	6. RESULTS AND ANALYSIS
	6.1 Experiment I - Software Defined Radio Based Radiometer Verification and Calibration
	6.1.1 Data collected
	6.1.2 Data analysis

	6.2 Experiment II - Evaluation of Sensitivity and Stability
	6.2.1 Data collected
	6.2.2 Data analysis

	6.3 Experiment III - Interfering Signal Mitigation
	6.3.1 Data collected
	6.3.2 Data analysis

	6.4 Experiment IV - Performance Impact of Interfering Signal Mitigation
	6.4.1 Data collected
	6.4.2 Data analysis
	6.4.3 Usage scenario

	6.5 Advantages of a Software Defined Radio Based Radiometer
	6.5.1 Cost benefits
	6.5.2 Weight and component size benefits
	6.5.3 Value added benefits

	6.6 Drawbacks of a SDR-based Radiometer
	6.6.1 Power consumption
	6.6.2 Bandwidth constraints


	7. CONCLUSION AND FUTURE WORK
	7.1 Conclusion
	7.2 Future Work

	BIBLIOGRAPHY
	A. SOURCE CODE

